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I. Introduction 

 

Boiling heat transfer is a process involving the change in phase from liquid to 

vapor. Where the viscosity, density, thermal conductivity, and specific heat of the fluid 

could be used to describe single-phase heat transfer, in boiling many additional properties 

are required. Boiling is used in a variety of industrial processes and applications, such as 

refrigeration, power generation, heat exchangers, cooling of high-power electronics 

components, and cooling of nuclear reactors. In this report, focus is on the aspects of 

boiling heat transfer in aerospace applications while considering the gravitational effect as 

the main factor.  

In an aerospace system, heat that may have been generated as a byproduct or 

consequence of a process aboard a vehicle has to be dissipated/dumped out of the 

system. A common way of heat transfer is done through two-phased loops (transfer of 

heat through convection) where isothermal efficiencies are achieved.  

To illustrate the role of machine learning in heat transfer, an experiment conducted 

to evaluate the effect of gravitational acceleration on boiling water is considered. The 

baseline theory behind this experiment is that during the normal earth gravity conditions, 

the vapors created at the bottom interface escape to the liquid-gas interface letting efficient 

heat dissipation to occur. However, in microgravity conditions, it is observed that the 

vapors tend to accumulate at the bottom surface and prevent efficient heat transfer. Now, 

for increasing the efficiency, a alcohol-water mixture was considered i.e, a water/2-

propanol mixture. In this mixture while boiling, the lower vapor pressure alcohol 

preferentially evaporates at the interface. The lower 2-propanol concentration at the 

interface near the wall reduces the interfacial concentration of the alcohol there virtually 

to zero. This, in turn, increases the surface tension close to the contact line at the wall to 

essentially that of pure water. The resulting gradient in surface tension along the interface 

produces a Marangoni driven flow of liquid towards the contact line at the wall. This effect 

is called the Marangoni effect.  

The Marangoni effect, which is the mass transfer along an interface between two 

phases due to a gradient of the surface tension, is an important factor which acts as the 

main force causing the capillary action during microgravity conditions, as the  buoyancy 

effect is negligible. This mixture provided similar efficiency seen in the boiling water at 

earth gravity in the micro-g condition. Hence, these data solidify the statement that the 

gravitational acceleration changes have an effect on boiling processes of water/2-

propanol mixture. 

So to explore the effects of the gravitational forces and the Marangoni effect on 

the boiling heat transfer of water/2-propanol mixture, machine learning tools are 

introduced to the data. A genetic algorithm is used to train the data over a range of 

gravitational acceleration conditions to better optimize the solution 
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II. Nomenclature 
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III. Theory 

A genetic algorithm is a search heuristic. It is a type of evolutionary algorithm used 

to perform optimization on constrained or unconstrained data using the principles of 

natural selection with binary representation and simple operators based on genetic 

recombination and genetic mutations. 

 In brief, the algorithm starts with selecting the organisms with the best fitness out 

of the whole population. These organisms produce offspring that have inherited the 

characteristics of their respective parents. It is to be noted that if the parents have the best 

fitness, their offspring are better than the parents and have an increased chance of 

surviving. This process is run iteratively until a set of best-fit organisms have been 

produced or the number of generations is completed. These organisms are then used to 

find the optimal solution to the defined problem.   

 There are two key steps in using a genetic algorithm to train a model. The first is 

to frame the problem statement which postulates the function. In this project, the algorithm 

is used to determine how the heat flux varies with the other parameters of the given data. 

For this, a postulated equation to solve for the heat flux in terms of superheat, surface 

tension, pressure, and gravitational acceleration is adopted. For the same, a well-defined 

initial raw data i.e. the initial population is provided which is the ydata. Once the problem 

has been defined, we use power law dependence to define the equation. The variables of 

the equation in each organism are called to be genes. Here the number of genes varies 

for the different tasks. These genes form a strain called a chromosome which is the 

solution. 

 

Step 1: Equations adopted to link the parameters:  

 For a section of the data, when the surface tension and pressure parameters are 

constant, the equation stated below is used for defining the dependence of the heat flux 

in terms of the superheat and gravitational acceleration. 

  𝑞′′ = 𝑛1(𝑇𝑤 − 𝑇𝑠𝑎𝑡)
𝑛2𝑔𝑛3                 (1)  

 When the whole data is considered while the parameters surface tension and 

pressure vary, a different equation is used as defined below. 

𝑞′′ = 𝑛1(𝑇𝑤 − 𝑇𝑠𝑎𝑡)
𝑛2(𝑔 + 𝑛4𝑔

𝑒𝑛
𝛾)

𝑛3𝑃𝑛5                          

(2) 

 

Step 2: Generating the fitness error function which helps to set the survival ratio for the 

solution  

 For each equation, we develop an error function which is plugged into the code 

to perform the survival function where the organisms with error less than the threshold 

defined survive and the rest are removed. Below are the error functions for the above-

postulated relations respectively. 

 

                                     𝑓𝑒𝑟𝑟,𝑖 =  −𝑙𝑛𝑞′′
𝑑𝑎𝑡𝑎,𝑖

+ 𝑙𝑛(𝑛1) + 𝑛2𝑙𝑛(𝑇𝑤 − 𝑇𝑠𝑎𝑡)𝑑𝑎𝑡𝑎,𝑖 + 𝑛3𝑙𝑛𝑔𝑑𝑎𝑡𝑎,𝑖          (3) 

   

𝑓𝑒𝑟𝑟,𝑖 =  −𝑙𝑛𝑞′′𝑑𝑎𝑡𝑎,𝑖 + 𝑙𝑛(𝑛1) + 𝑛2𝑙𝑛(𝑇𝑤 − 𝑇𝑠𝑎𝑡)𝑑𝑎𝑡𝑎,𝑖 + 𝑛3𝑙𝑛(𝑔𝑑𝑎𝑡𝑎,𝑖 + 𝑛4𝑔𝑒𝑛𝛾𝑑𝑎𝑡𝑎,𝑖) + 𝑛5𝑙𝑛𝑃𝑑𝑎𝑡𝑎,𝑖    (4) 



 

4 

 

 Once the algorithm is set up, the data is trained using the initial population and 

some initial guess for the genes. For the initial run, the guesses can be far from the optimal 

solution hence the noise generated in the data can be high. Once the understanding of 

the effect of each gene on the solution is built, the parameters are varied to achieve 

convergence. There are mainly four parameters that can have an impact on the 

convergence of the minimum error i.e. NGEN, MFRAC, Perturbation coefficients, and 

Mutation rate. 

NGEN is the variable related to the number of generations. With worse initial 

guesses, more generations may be required to reach convergence.  

MFRAC is the median of the fraction which affects the error threshold for keeping 

an organism. To prevent from ending at a local error minimum, the value can be raised to 

potentially find organisms with lower error values to be kept for the next generations. 

Perturbation coefficients are the coefficients in the initial population array which 

define the range of initial guesses over the population. With worse initial guesses the 

algorithm needs to be started with a lower range of perturbation constants to search for 

solutions over a wider domain.  

The mutation rate is the parameter that controls the level of diversity in the offspring 

formed. This allows the algorithm to sample more of the parameter space and avoid 

landing up in a local error minimum. With worse initial guesses, the mutation rate is kept 

high to search over a larger solution domain. However, it is helpful to decrease the 

mutation rate as the solution is honed to fine-tune the final constants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. Task One 

 

a)  
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Within this task, we were able to uncover if our Python environment and respective 

libraries were functional for use throughout the remainder of the tasks. To do so, CodeP1.1 

was provided and inserted within the initial cells of the Jupyter Notebook. The output of 

data that was collected in the array variable ydata was compared and verified against the 

raw data given in the project file.  
  
 ydata = [[44.1, 32.5, 0.098, 1.79, 5.5], [47.4, 33.2, 0.098, 1.79, 5.5], [49.4, 34.2, 0.098, 1.79, 5.5], [59.2, 
34.8, 0.098, 1.79, 5.5], [67.8, 36.3, 0.098, 1.79, 5.5], [73.6, 37.3, 0.098, 1.79, 5.5], [76.3, 37.8, 0.098, 1.79, 
5.5], [85.3, 39.2, 0.098, 1.79, 5.5], [96.5, 39.3, 0.098, 1.79, 5.5], [111.0, 42.3, 0.098, 1.79, 5.5], [124.0, 43.5, 
0.098, 1.79, 5.5], [136.2, 45.4, 0.098, 1.79, 5.5], [143.5, 46.7, 0.098, 1.79, 5.5], [154.6, 47.9, 0.098, 1.79, 
5.5], [163.1, 48.6, 0.098, 1.79, 5.5], [172.8, 50.9, 0.098, 1.79, 5.5], [184.2, 51.7, 0.098, 1.79, 5.5], [203.7, 
56.4, 0.098, 1.79, 5.5], [36.7, 30.2, 9.8, 1.79, 5.5], [55.1, 34.1, 9.8, 1.79, 5.5], [67.5, 35.3, 9.8, 1.79, 5.5], 
[78.0, 37.8, 9.8, 1.79, 5.5], [92.0, 38.1, 9.8, 1.79, 5.5], [120.0, 44.1, 9.8, 1.79, 5.5], [134.3, 46.9, 9.8, 1.79, 
5.5], [150.3, 48.5, 9.8, 1.79, 5.5], [167.0, 49.2, 9.8, 1.79, 5.5], [184.0, 52.7, 9.8, 1.79, 5.5], [196.5, 53.1, 9.8, 
1.79, 5.5], [42.4, 29.7, 19.6, 1.79, 5.5], [48.7, 31.0, 19.6, 1.79, 5.5], [54.5, 31.2, 19.6, 1.79, 5.5], [70.8, 32.4, 
19.6, 1.79, 5.5], [73.7, 31.4, 19.6, 1.79, 5.5], [81.8, 32.5, 19.6, 1.79, 5.5], [91.9, 36.3, 19.6, 1.79, 5.5], [103.9, 
36.3, 19.6, 1.79, 5.5], [119.1, 37.2, 19.6, 1.79, 5.5], [133.7, 38.4, 19.6, 1.79, 5.5], [139.9, 39.7, 19.6, 1.79, 
5.5], [148.3, 40.9, 19.6, 1.79, 5.5], [157.0, 41.6, 19.6, 1.79, 5.5], [169.1, 43.9, 19.6, 1.79, 5.5], [179.2, 45.0, 
19.6, 1.79, 5.5], [205.0, 47.9, 19.6, 1.79, 5.5]] 
 

Output 1 : CodeP1.1 ydata   

 

b)  

With the array of data obtained within Task 2a, two log-log plots of heat flux versus 

wall superheat were created with the gravitational accelerations being 0.098 and 9.8 m/s2 

respectively. This provided a visual representation of the variation of heat flux with different 

gravity and superheat. The plots were created using libraries NumPy and matplotlib and 

can be found below. 

 
Figure 1: Heat Flux vs. Wall Superheat where g = 0.0098 𝑚/𝑠2  
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Figure 2: Heat Flux vs. Wall Superheat where g = 9.8 𝑚/𝑠2  

V. Task Two 

 

This task developed familiarity with the elements that comprise the genetic 

algorithm that explores the interplay of gravity and Marangoni effects during the boiling 

process for a variety of gravitational acceleration conditions. Manipulation of the genetic 

algorithm was conducted to study the convergence of the algorithm. Convergence was 

indicated when the algorithm produced a minimum error, [[Ferr]mean/ND]min, less than 0.04.  

To manipulate the genetic algorithm, four different initial inputs for genes 1-3 were 

selected to visualize the effects on the genetic algorithm. Furthermore, the number of 

generations (NGEN), Fraction of median threshold (MFRAC), and the mutation rate (MR) 

were adjusted until the algorithm produced convergence. A plot was also created to 

provide a greater visualization of the fluctuations of the gene values and average error for 

the population throughout the generation. A second plot was created to show the 

measured heat flux vs the predicted heat flux using the gene constants that resulted from 

the genetic algorithm. Below lies the initial case of values provided for the script along with 

the four other trials conducted with their respective minimum errors.  

 

Trial Gene n1i Gene n2i Gene n3i NGEN MFRAC MR Min error 

Base 0.00027 4.0 0.063 6000 0.5 0.09 0.031 
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1 0.029 4.6 0.03 6000 0.8 0.25 0.030 

2 0.0035 2.7721 0.02836 6000 0.4 0.06 0.0293 

3 0.029 5.6 0.0788 18000 0.8 0.07 0.0307 

4 1.1 1.2 0.35 18000 0.9 0.4 0.038 

Table 1: Task Two Trials and Respective Inputs  

The base trial consisted of initial values provided within the project instructions 

which served as a baseline of the genetic algorithm.  These values ultimately led to 

convergence with a minimum error of around 0.031 and an RMSE deviation of 31.040 

which lies close to the ± 10% error range as the scale of the plot ranges from 50 to 

200. Within the plot created to show the fluctuations of the constants and errors throughout 

the generation, there was little noise within the constants. However, noise progressively 

increased within the error as the generation number increased.  

 

Figure 3: Base Trial Constants and Error and Measured Heat Flux vs Predicted Heat Flux 

Within trial 1, the values of the genes (n1i, m2i, and n3i) were altered from the 

provided initial gene inputs. Without manipulation of the fractional median threshold, 

mutation rate, or the number of generations, convergence was not achieved. Both MFRAC 

and MR were then raised to analyze the effect they had on the genes throughout the 

algorithm. What was found was that with a heightened mutation rate, there is significantly 

more noise within the plot of the data. This noise would arise as the generations progressed 

with the most noise present at the end of the generations. The fractional median threshold 

was also raised to accept more values and prevented the algorithm from being susceptible 

to a local minimum. This raised fractional median threshold is also seen to contribute to 

the noise present within the data. The heightened MFRAC and MR led to convergence as 

a greater range of data could be analyzed even though the initial values used were 

dramatically altered. The resulting aFerravgMin and RMSE were determined to be around 

0.030 and 21.563 respectively. 
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Figure 4: Trial 1 Constants and Error and Measured Heat Flux vs Predicted Heat Flux 

For trial 2, the gene values (n1i, n2i, and n31) were selected as the previous trials 

determined gene values associated with minimum. With this data that already converged, 

the fractional median threshold and the mutation rate were manipulated in an attempt to 

narrow in on values that would bring the error present down. The selected values did just 

that as the outcome presented minimum error and RMSE values of around 0.0293 and 

19.697 respectively.  

 

Figure 5: Trial 2 Constants and Error and Measured Heat Flux vs Predicted Heat Flux 

 In Trial 3, the initial gene values were again dramatically changed to determine the 

best combination of the MFRAC and MR that would result in convergence. This time, 

however, the number of generations was tripled to 18000. Initially, the gene values and 

number of generations with the baseline MFRAC and MR were insufficient as they did not 

result in convergence. This led to the increase of MFRAC to 0.8 and left MR at the provided 

0.09 value. This combination brought the convergence of the algorithm, but significant 

noise was present within the constants. To reduce this, the MR was lowered to 0.07 which 

drastically reduced the noise altogether throughout the 18000 generations. The recorded 

minimum error was around 0.0307 with an RMSE value 18.978.  
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Figure 6: Trial 3 Constants and Error and Measured Heat Flux vs Predicted Heat Flux 

 Trial four saw gene values that were the most different from any that were 

previously selected along with the number of generations being 18000. With the insight 

gained from the previous trials, it was understood that both the MFRAC and MR would 

have to be high values to allow the algorithm to traverse through a wider range of values. 

This led to the MFRAC and MR being 0.9 and 0.4 respectively. These high values led to 

convergence, but an extreme amount of noise in the constants and minimum error averages 

throughout the generations. These manipulations along with the initial gene selection 

resulted in a minimum error and RMSE of around 0.038 and 19.0055 respectively.  

 

Figure 7: Trial 4 Constants and Error and Measured Heat Flux vs Predicted Heat Flux 

In order to go through the trials in a timely manner and improve the readability of 

the scripts, the initially provided script was adjusted. First, the mutation rate and 

perturbation constants were changed from hard values to variables that could be adjusted 

as necessary. Every variable that could potentially be changed to achieve convergence of 

the trial was removed from the main script cell and placed above it. These variables 

included the initial gene values, the number of generations, the fraction of median 

threshold,  mutation rate, and the perturbation constants. To increase readability, the 
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commented code that would be used in later tasks was removed. Each trial saw a change 

in values from the baseline provided. For trial one, the gene values, the MFRAC, and the 

MR were changed. For trial two, the gene values, the MFRAC, and the MR were changed. 

For trial three, the gene values, the NGEN, the MFRAC, and the MR were changed. Lastly, 

trial three saw the gene values, the NGEN, the MFRAC, and the MR change.  
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VI. Task Three 

 With the previous task creating some familiarity with genetic algorithms and the 

manipulation required to ensure conversion, task three introduces more data and two 

additional gene values to create a five-constant model. This new model includes varying 

pressures and the surface tension parameter 𝛾. To fit this new model and data set, the 

provided script was altered to include commented code, and the number of data vectors, 

ND, and the total number of DNA strands, NS, were changed from 45 to 77. In doing so, 

other aspects of the script that were meant to accommodate only three constants had to be 

adjusted to fit the five. This was done by using the equation below and the guide that was 

provided within the project instructions.   

𝑓𝑒𝑟𝑟,𝑖 =  −𝑙𝑛𝑞′′
𝑑𝑎𝑡𝑎,𝑖

+ 𝑙𝑛(𝑛1) + 𝑛2𝑙𝑛(𝑇𝑤 − 𝑇𝑠𝑎𝑡)𝑑𝑎𝑡𝑎,𝑖 + 𝑛3𝑙𝑛(𝑔𝑑𝑎𝑡𝑎,𝑖 + 𝑛4𝑔𝑒𝑛𝛾𝑑𝑎𝑡𝑎,𝑖) + 𝑛5𝑙𝑛𝑃𝑑𝑎𝑡𝑎,𝑖       (5) 

The result of the adjustments was a minimum error of around 0.0285. This 

minimum error ensured that the guesses created the best fit.  

 

Figure 8: Task 3 Constants and Error and Measured Heat Flux vs Predicted Heat Flux 

 With initial guesses that resulted in the best fit, a surface plot of q"/ (Tw −Tsat )
n2  

versus g and γ for 1.0 < g < 20 m/s2 and 0.0 < γ < 2.0 at a pressure of 10 kPa was created. 

This creates a greater visualization of the interactions between the heat flux and the varying 

surface tension parameter and gravity at a set pressure.  
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Figure 9: Surface Plot of Function = 𝑞"/(𝑇𝑤 − 𝑇𝑠𝑎𝑡)𝑛2 vs. g and 𝛾 
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VII. Task Four 

Using dimensionless equations and data is a typical solution to generalize and 

reduce the complexity of problems. Through the well-known Rohsenow correlation for 

nucleate boiling, the data from Task Three was converted to non-dimensional parameters. 

The equations for conversion are found below:  

  𝑄𝑠 = 8
𝑞′′

𝜇𝑙ℎ𝑙𝑣
√

𝜎

𝑔𝑒𝑛(𝜌𝑙−𝜌𝑣)
        (6) 

𝐽𝑎𝑠 = 100
𝑐𝑝(𝑇𝑤−𝑇𝑠𝑎𝑡)

ℎ𝑙𝑣
                   (7) 

Prl                                           (8) 

 
𝑔

𝑔𝑒𝑛
                   (9) 

  𝛾 = 𝜎𝑤−𝜎𝑚𝑖𝑥
𝜎𝑚𝑖𝑥

              (10)  

 

 Along with the equations, properties were provided for the three varying pressures 

seen within the data (5.5 kPa, 7.0 kPa, and 9.5 kPa). 

 

 P = 5.5 kPa P = 7.0 kPa P = 9.5 kPa 

Tsat (°𝐶) 34.9 38.0 45.0 

cpl (kJ/kg°C) 4.18 4.18 4.18 

hlv (kJ/kg°C) 2 2418 2406 2394 

µl (Ns/m2 ) 7.19x10-4 6.53x10-4 5.96x10-4 

Prl 4.83 4.54 3.91 

ρl (kg/m3 ) 994 993 990 

ρv (kg/m3 ) 0.0397 0.0476 0.182 

σ (N/m) 0.0706 0.0692 0.0688 

 

Table 2: Low Pressure Water Saturation Properties 

 With the equations for non-dimensional conversion and the properties for the values 

at their respective pressures, a for loop with conditions set to recognize the pressures, the 
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data was converted. With the dimensionless parameters set, an error function, 𝑓𝑒𝑟𝑟,𝑖, was 

created to fit within the genetic algorithm.  

 𝑄𝑠 = 𝑛1𝐽𝑎𝑠
𝑛2 (

𝑔

𝑔𝑒𝑛
+ 𝑛3𝛾)

𝑛4

𝑃𝑟𝑙
−𝑛5           (11) 

 

Equation (11) stated above was altered using the following steps to obtain the error 

function.  

Taking natural log on both sides: 

 

 𝑙𝑛(𝑄𝑠)𝑑𝑎𝑡𝑎,𝑖 = 𝑙𝑛(𝑛1)𝑑𝑎𝑡𝑎,𝑖 + 𝑛2𝑙𝑛(𝐽𝑎𝑠)𝑑𝑎𝑡𝑎,𝑖 + 𝑛4𝑙𝑛(
𝑔

𝑔𝑒𝑛
+ 𝑛3𝛾)𝑑𝑎𝑡𝑎,𝑖 − 𝑛5𝑙𝑛(𝑃𝑟𝑙)𝑑𝑎𝑡𝑎,𝑖  (12) 

Based on this equation, an error function 𝑓𝑒𝑟𝑟,𝑖 for a given data point i can be defined as: 

        𝑓𝑒𝑟𝑟,𝑖 =  −𝑙𝑛(𝑄𝑠)𝑑𝑎𝑡𝑎,𝑖 + 𝑙𝑛(𝑛1)
𝑑𝑎𝑡𝑎,𝑖 + 𝑛2𝑙𝑛(𝐽𝑎𝑠)𝑑𝑎𝑡𝑎,𝑖 + 𝑛4𝑙𝑛(

𝑔

𝑔𝑒𝑛
+ 𝑛3𝛾)𝑑𝑎𝑡𝑎,𝑖 − 𝑛5𝑙𝑛(𝑃𝑟𝑙)𝑑𝑎𝑡𝑎,𝑖    (13) 

With a total of 𝑁𝐷 data points in the data set to be analyzed, the total error function 

Ferr is the sum of the fractional absolute value of the error for each data point in the 

population, 𝑁𝐷:  

𝐹𝑒𝑟𝑟 = ∑𝑁𝐷
𝑖=1

|𝑓𝑒𝑟𝑟,𝑖|

|𝑙𝑛(𝑄𝑠)𝑑𝑎𝑡𝑎,𝑖|
 =

∑𝑁𝐷
𝑖=1

|−𝑙𝑛(𝑄𝑠)𝑑𝑎𝑡𝑎,𝑖+𝑙𝑛(𝑛1)𝑑𝑎𝑡𝑎,𝑖+𝑛2𝑙𝑛(𝐽𝑎𝑠)𝑑𝑎𝑡𝑎,𝑖+𝑛4𝑙𝑛(
𝑔

𝑔𝑒𝑛
+𝑛3𝛾)𝑑𝑎𝑡𝑎,𝑖−𝑛5𝑙𝑛(𝑃𝑟𝑙)𝑑𝑎𝑡𝑎,𝑖|

|𝑙𝑛(𝑄𝑠)𝑑𝑎𝑡𝑎,𝑖|
  (14) 

 

With the equations defined, they were translated within the code at the necessary 

lines to incorporate the changes done for the dimensionless parameters as follows: 

 

Ferravgn[i] = -1.*lydata[i][0] + math.log(n1avg[k]) + n2avg[k]*lydata[i][1] 

           + n4avg[k]*math.log(ydata[i][2] + n3avg[k]*ydata[i][3])  

- n5avg[k]*math.log(ydata[i][4])          (15) 

In altering the provided script with the non-dimensional conversion of the data and 

replacing the error and heat flux equations derived above, the non-dimensional data was obtained 

as output. This output can be found in Appendix 2.2.  

VIII. Task Five 

a)  

Using the script seen within Task Three and adding the changes discussed in Task 

Four, gene constants n1 through n5 were to be determined to create a best-fit data set. To 

do this, the understanding of the number of generations, the fraction of median threshold, 



 

15 

and the mutation rate were vital to determine suitable values. Initially, the values used 

were ones that were provided within Task Three. These values resulted in a minimum 

error of around 0.1, which was unacceptable. To combat this, the number of generations, 

the fraction of median threshold, and the mutation rate were raised. This led to new 

minimum gene values that were then substituted in for the previous initial gene values. 

This process was repeated until there was a negligible difference between the new 

minimum error value and the previous generation’s minimum error.  

  

The minimum error did not achieve a convergence level (less than 0.04) until the 

mutation rate was lowered to 0.15 with a fraction of median threshold value of 0.9 and a 

number of generations being 20,000. The gene values that were associated with this 

minimum error were then substituted for the previously used values. The generations were 

then lowered to 6,000 with a lower mutation rate of 0.06 and maintaining the median 

threshold value of 0.9. These settings with the final genetic values lead to a minimum error 

that is consistently below 0.04 and around 0.385 with an RMSE value of 2.234..  

 

 

Figure 10: Task 5.a Constants and Error and Measured Q vs Predicted Q 

b)  

To generate the surface plot of the function varying over a range of g/gen and 𝛾 at 

a pressure of 10kPa, the equation (11) was rearranged to obtain the below-stated form: 

 
𝑄𝑠𝑃𝑟𝑙

−𝑛5

𝐽𝑎𝑠
𝑛2

= 𝑛1 (
𝑔

𝑔𝑒𝑛
+ 𝑛3𝛾)

𝑛4

          (16) 

Next we used the data of constant values from the best fit derived in task 5(a) to 

determine and plot the results. 
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Figure 11: Surface Plot of Function = Qs Prl
n5/Jas

n2 vs. g/gen and 𝛾 

c)  

 With the genetic algorithm trained off of the 75 data points, this task aims to test 

and validate the training through a data set containing 15 data points. To do this, the 

script's number of data vectors in the array, ND, and the total number of DNA strands, NS, 

were changed from 75 to 15. The provided validation data was then inserted into the ydata 

array variable. Then using the low-pressure saturation properties given in task 4 the 

validation data was converted to non-dimensionless data to determine the Qs,exp using 

equation (11). In determining the RMSE deviation value and plotting the values, the 

predicted heat flux data was converted back to dimensional values. The created plot 

provided a visual representation of the variation of the measured vs predicted heat flux 

data. The RMSE deviation value was determined to be 14.70872.  

 

Figure 12: Task 5.c plot between Measured q” vs Predicted q” 
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IX. Conclusion 

The use of genetic algorithms allowed for the simplification of a complex problem. 

Throughout the tasks above, a greater understanding of genetic algorithms and 

manipulation of said algorithms was established. More specifically, the mutation rate, 

number of generations, and the fraction of median threshold were better understood. It 

was determined that the combination of these values can allow for the algorithm to search 

across a wider or smaller range of potential solutions. Adjusting these values specifically, 

the number of generations could directly lead to the increase or decrease of operation 

time. Within these tasks, a greater understanding of raw data analysis and dimensionless 

data was developed.  

Use of raw data analysis requires high computational power due to the higher 

number of variables present in the system to determine, and more difficult to visualize the 

interplay of said variables and their effect on the overall system. The raw data analysis 

also typically leads to a larger scale of data that can be more difficult to comprehend. On 

the other hand, in dimensionless analysis the number of variables present is minimized. 

This helps to achieve an optimal solution with minimal resources. Dimensionless analysis 

can also be scaled to bigger or smaller systems. This allows for validation of the results 

using a smaller set of untrained data 

The genetic algorithm was successfully trained to optimize the solution accurately. 

The plots that define the variation between the measured and predicted heat flux data 

explain that gravitational acceleration plays an important role on the heat dissipation rate. 

Also, during lower gravity conditions marangoni effect acts as a supplement for the 

absence of the buoyancy effect present in higher gravitational acceleration conditions. 

In completing the tasks, the potential for machine learning and genetic algorithms 

was made visible. It also made aware of the necessity of data, initial guesses, and other 

parameters affecting the algorithm. Without proper alignment, a genetic algorithm can 

produce a solution that does not meet the requirements of the problem.  

 

X. Work Distribution 

 

 Throughout the project timeline, the work was divided by task, but was ultimately 

worked on by both teammates as needed. Using GitHub, and living close in proximity, the 

team was able to easily collaborate. The report was also worked on by task and revised 

by one another.  
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XI. Appendices 

1. Figures 
 

 
Figure 1: Heat Flux vs. Wall Superheat where g = 0.0098 𝑚/𝑠2  

 
 

 

 
Figure 2: Heat Flux vs. Wall Superheat where g = 9.8 𝑚/𝑠2  
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Figure 3: Base Trial Constants and Error and Measured Heat Flux vs Predicted Heat Flux 

 

Figure 4: Trial 1 Constants and Error and Measured Heat Flux vs Predicted Heat Flux 

 

Figure 5: Trial 2 Constants and Error and Measured Heat Flux vs Predicted Heat Flux 
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Figure 6: Trial 3 Constants and Error and Measured Heat Flux vs Predicted Heat Flux 

 

Figure 7: Trial 4 Constants and Error and Measured Heat Flux vs Predicted Heat Flux 

 

Figure 8: Task 3 Constants and Error and Measured Heat Flux vs Predicted Heat Flux 
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Figure 9: Surface Plot of  𝑞"/(𝑇𝑤 − 𝑇𝑠𝑎𝑡)𝑛2 vs. g and 𝛾 

 

 

Figure 10: Task 5.a Constants and Error and Measured Q vs Predicted Q 
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Figure 11: Surface Plot of Qs Prl
n5/Jas

n2 vs. g/gen and 𝛾

 

Figure 12: Task 5.c plot between Measured q” vs Predicted q” 

2. Outputs 

ydata = [[44.1, 32.5, 0.098, 1.79, 5.5], [47.4, 33.2, 0.098, 1.79, 5.5], [49.4, 34.2, 0.098, 1.79, 5.5], [59.2, 
34.8, 0.098, 1.79, 5.5], [67.8, 36.3, 0.098, 1.79, 5.5], [73.6, 37.3, 0.098, 1.79, 5.5], [76.3, 37.8, 0.098, 1.79, 
5.5], [85.3, 39.2, 0.098, 1.79, 5.5], [96.5, 39.3, 0.098, 1.79, 5.5], [111.0, 42.3, 0.098, 1.79, 5.5], [124.0, 43.5, 
0.098, 1.79, 5.5], [136.2, 45.4, 0.098, 1.79, 5.5], [143.5, 46.7, 0.098, 1.79, 5.5], [154.6, 47.9, 0.098, 1.79, 
5.5], [163.1, 48.6, 0.098, 1.79, 5.5], [172.8, 50.9, 0.098, 1.79, 5.5], [184.2, 51.7, 0.098, 1.79, 5.5], [203.7, 
56.4, 0.098, 1.79, 5.5], [36.7, 30.2, 9.8, 1.79, 5.5], [55.1, 34.1, 9.8, 1.79, 5.5], [67.5, 35.3, 9.8, 1.79, 5.5], 
[78.0, 37.8, 9.8, 1.79, 5.5], [92.0, 38.1, 9.8, 1.79, 5.5], [120.0, 44.1, 9.8, 1.79, 5.5], [134.3, 46.9, 9.8, 1.79, 
5.5], [150.3, 48.5, 9.8, 1.79, 5.5], [167.0, 49.2, 9.8, 1.79, 5.5], [184.0, 52.7, 9.8, 1.79, 5.5], [196.5, 53.1, 9.8, 
1.79, 5.5], [42.4, 29.7, 19.6, 1.79, 5.5], [48.7, 31.0, 19.6, 1.79, 5.5], [54.5, 31.2, 19.6, 1.79, 5.5], [70.8, 32.4, 
19.6, 1.79, 5.5], [73.7, 31.4, 19.6, 1.79, 5.5], [81.8, 32.5, 19.6, 1.79, 5.5], [91.9, 36.3, 19.6, 1.79, 5.5], [103.9, 
36.3, 19.6, 1.79, 5.5], [119.1, 37.2, 19.6, 1.79, 5.5], [133.7, 38.4, 19.6, 1.79, 5.5], [139.9, 39.7, 19.6, 1.79, 
5.5], [148.3, 40.9, 19.6, 1.79, 5.5], [157.0, 41.6, 19.6, 1.79, 5.5], [169.1, 43.9, 19.6, 1.79, 5.5], [179.2, 45.0, 
19.6, 1.79, 5.5], [205.0, 47.9, 19.6, 1.79, 5.5]] 

Output 1 : CodeP1.1 ydata   

ydata = 
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[5.463213627095972, 5.618279569892473, 0.01, 1.79, 4.83] 

[5.872025531164378, 5.739288668320927, 0.01, 1.79, 4.83] 

[6.119790321508867, 5.912158808933002, 0.01, 1.79, 4.83] 

[7.33383779419686, 6.015880893300247, 0.01, 1.79, 4.83] 

[8.39922639267816, 6.275186104218361, 0.01, 1.79, 4.83] 

[9.117744284677178, 6.448056244830439, 0.01, 1.79, 4.83] 

[9.452226751642238, 6.534491315136476, 0.01, 1.79, 4.83] 

[10.567168308192436, 6.776509511993383, 0.01, 1.79, 4.83] 

[11.95465113412157, 6.79379652605459, 0.01, 1.79, 4.83] 

[13.750945864119112, 7.312406947890818, 0.01, 1.79, 4.83] 

[15.361417001358289, 7.5198511166253095, 0.01, 1.79, 4.83] 

[16.872782222459666, 7.848304383788254, 0.01, 1.79, 4.83] 

[17.77712370721705, 8.073035566583952, 0.01, 1.79, 4.83] 

[19.152218293628962, 8.280479735318444, 0.01, 1.79, 4.83] 

[20.20521865259304, 8.401488833746898, 0.01, 1.79, 4.83] 

[21.406877885763812, 8.799090157154673, 0.01, 1.79, 4.83] 

[22.81913719072739, 8.937386269644335, 0.01, 1.79, 4.83] 

[25.234843896586153, 9.749875930521092, 0.01, 1.79, 4.83] 

[4.546483902821365, 5.220678246484697, 1.0, 1.79, 4.83] 

[6.825919973990659, 5.894871794871794, 1.0, 1.79, 4.83] 

[8.362061674126487, 6.1023159636062845, 1.0, 1.79, 4.83] 

[9.662826823435053, 6.534491315136476, 1.0, 1.79, 4.83] 

[11.397180355846471, 6.586352357320098, 1.0, 1.79, 4.83] 

[14.865887420669312, 7.623573200992556, 1.0, 1.79, 4.83] 

[16.637405671632408, 8.107609594706368, 1.0, 1.79, 4.83] 

[18.619523994388313, 8.38420181968569, 1.0, 1.79, 4.83] 

[20.68835999376479, 8.505210918114143, 1.0, 1.79, 4.83] 

[22.794360711692942, 9.11025641025641, 1.0, 1.79, 4.83] 

[24.342890651345996, 9.179404466501241, 1.0, 1.79, 4.83] 

[6.331242458827516, 4.888888888888888, 2.0, 1.79, 3.91] 

[7.271969522285379, 5.1158730158730155, 2.0, 1.79, 3.91] 

[8.138035707691028, 5.168253968253968, 2.0, 1.79, 3.91] 

[9.27288105408464, 4.976190476190475, 2.0, 1.79, 3.91] 

[10.571980332193116, 5.325396825396825, 2.0, 1.79, 3.91] 

[11.00501342489594, 5.29047619047619, 2.0, 1.79, 3.91] 

[12.214519649341762, 5.3428571428571425, 2.0, 1.79, 3.91] 

[13.722669385996433, 6.023809523809523, 2.0, 1.79, 3.91] 

[15.514530459249505, 6.023809523809523, 2.0, 1.79, 3.91] 

[17.784221152036725, 6.18095238095238, 2.0, 1.79, 3.91] 

[19.964318791161293, 6.425396825396825, 2.0, 1.79, 3.91] 

[20.890113679008714, 6.652380952380951, 2.0, 1.79, 3.91] 

[22.14441643028586, 6.826984126984126, 2.0, 1.79, 3.91] 

[23.443515708394337, 6.984126984126984, 2.0, 1.79, 3.91] 

[25.25030895725785, 7.368253968253969, 2.0, 1.79, 3.91] 

[26.75845869391252, 7.542857142857143, 2.0, 1.79, 3.91] 

[30.610960001406625, 8.03174603174603, 2.0, 1.79, 3.91] 

[5.2526135553031565, 5.134243176178659, 2.0, 1.79, 4.83] 

[6.033072644888296, 5.358974358974359, 2.0, 1.79, 4.83] 

[6.751590536887313, 5.393548387096774, 2.0, 1.79, 4.83] 

[8.770873578194895, 5.600992555831265, 2.0, 1.79, 4.83] 

[9.130132524194401, 5.428122415219189, 2.0, 1.79, 4.83] 

[10.13357992508958, 5.618279569892473, 2.0, 1.79, 4.83] 

[11.384792116329248, 6.275186104218361, 2.0, 1.79, 4.83] 

[12.87138085839618, 6.275186104218361, 2.0, 1.79, 4.83] 
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[14.75439326501429, 6.430769230769232, 2.0, 1.79, 4.83] 

[16.563076234529056, 6.638213399503721, 2.0, 1.79, 4.83] 

[17.331147084596974, 6.862944582299421, 2.0, 1.79, 4.83] 

[18.371759204043823, 7.070388751033913, 2.0, 1.79, 4.83] 

[19.44953604204235, 7.1913978494623665, 2.0, 1.79, 4.83] 

[20.948513023626504, 7.58899917287014, 2.0, 1.79, 4.83] 

[22.19972521486617, 7.779156327543424, 2.0, 1.79, 4.83] 

[25.395891010310073, 8.280479735318444, 2.0, 1.79, 4.83] 

[10.45556972006653, 7.209891936824605, 1.0, 0.0, 4.54] 

[9.640850001619787, 7.0361596009975065, 1.0, 0.0, 4.54] 

[8.961916902914169, 6.862427265170407, 1.0, 0.0, 4.54] 

[8.418770423949674, 6.688694929343307, 1.0, 0.0, 4.54] 

[5.703038029127198, 5.906899418121363, 1.0, 0.0, 4.54] 

[8.147197184467426, 6.514962593516209, 1.0, 0.0, 4.54] 

[7.19669084627956, 6.42809642560266, 1.0, 0.0, 4.54] 

[8.882367733849915, 6.2924731182795695, 0.01, 1.71, 4.83] 

[10.096415206537907, 6.655500413564928, 0.01, 1.71, 4.83] 

[11.236133242122555, 6.828370554177004, 0.01, 1.71, 4.83] 

[12.79705142129283, 7.1913978494623665, 0.01, 1.71, 4.83] 

[14.494240235152578, 7.450703060380478, 0.01, 1.71, 4.83] 

[17.170099970873054, 7.848304383788254, 0.01, 1.71, 4.83] 

[20.031783299351897, 8.280479735318444, 0.01, 1.71, 4.83] 

[25.705596998240683, 8.799090157154673, 0.01, 1.71, 4.83] 

 

Output 2:Task 4: ydata printed in table format 

3. Table 

 

Trial Gene n1i Gene n2i Gene n3i NGEN MFRAC MR Min error 

Base 0.00027 4.0 0.063 6000 0.5 0.09 0.031 

1 0.029 4.6 0.03 6000 0.8 0.25 0.030 

2 0.0035 2.7721 0.02836 6000 0.4 0.06 0.0293 

3 0.029 5.6 0.0788 18000 0.8 0.07 0.0307 

4 1.1 1.2 0.35 18000 0.9 0.4 0.038 

Table 1: Task Two Trials and Respective Inputs  

 

 P = 5.5 kPa P = 7.0 kPa P = 9.5 kPa 

Tsat (°𝐶) 34.9 38.0 45.0 

cpl (kJ/kg°C) 4.18 4.18 4.18 

hlv (kJ/kg°C) 2 2418 2406 2394 
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µl (Ns/m2 ) 7.19x10-4 6.53x10-4 5.96x10-4 

Prl 4.83 4.54 3.91 

ρl (kg/m3 ) 994 993 990 

ρv (kg/m3 ) 0.0397 0.0476 0.182 

σ (N/m) 0.0706 0.0692 0.0688 

 

Table 2: Low Pressure Water Saturation Properties 

 

 

 

 

 

 

 

 

 

 

 


