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I. Introduction 

A simplified yet intelligent model that teaches computers to 

process the data like a human brain is coined as a neural network. 

There are three types of neural networks namely, Artificial Neural 

Networks (ANN) Convolution Neural Networks (CNN), and Recurrent 

Neural Networks (RNN). In this project, the implementation and 

understanding of a simple artificial neural network is conducted. An 

Artificial neural network is a model with connected input/output layers 

and hidden layers with neurons to simulate a human brain. These 

models are widely used in the energy sector to evaluate systems where 

physical prototyping and evaluation for various operating conditions are 

not feasible.  

In  this project, a study about the performance characteristics of 

solar photovoltaic cells is conducted. A photovoltaic cell, commonly 

known as a solar cell is a device that converts sunlight into electricity 

directly using the principle of the photovoltaic effect, which is basically 

having a potential voltage difference between the two semiconductor 

slices when light strikes the cell. These solar cells are generally used in 

combinations of series, parallel, or both to achieve greater performance 

efficiency. 

In the first part of the project, 72 solar cells are connected in 

series, each having a surface area of 173cm2. With the knowledge of 

the parameters depending on the output performance of the cells, a 

neural network model is developed and trained using a set of training 

data with low intensities. This model is then validated and used to 

determine the outputs for high incident radiation values. 

In the second part, the objective is to determine the best 

combination for the cells to be organized which fetches the best 

performance output. For this purpose, a neural network is modeled and 

trained with a set of data and is validated for its accuracy. Then this 

model is used to determine the best combination for various initial 

parameters to give the best output. Further using the best combination 

the power output for each combination is determined and analyzed. 
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Figure 1: Solar PV cell 
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II. Nomenclature 

 ID              Incident direct normal solar radiation intensity (W/m2) 

            Tair            Outside air temperatures. (0C) 

  RL        Load Resistance(ohms) 

      VL             panel output voltage to load(V) 

       W             Panel power output (W) 

             M             Mode stating the combination of the solar cells 
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III. Part One 

This part of the project is focused on understanding the operating 

parameters and implementation of machine learning models to achieve the best 

performance. A combination of 72 solar PV cells is connected in series with 

each having an area of 173cm2. Ideally, this type of combination is capable of 

receiving peak incident levels up to 1300W/cm2. But this model is modified to 

receive values 50% more than the ideal value. This is achieved by the use of 

tracking mirrors that reflect additional solar radiation into the panels. 

For the purpose of determining the performance of the solar cell in order 

to achieve higher current and voltage levels, a neural network model is 

developed and trained using the low intensity/flux operating parameters i.e, with 

no tracking mirrors, and then used to determine the performance using the high 

intensity/flux data. 

 

1. Task 1.1 

  With the understanding of the principal component analysis example 

code, the same is performed on the low flux data inputs to understand the 

parameter’s relative importance.  

a. The low flux operating conditions data file is loaded and standardized. Using 

the NumPy and math libraries the mean and standard deviation of each 

parameter namely, Tair, ID , and RL is calculated. Then to standardize the 

data each value is subtracted from the respective standard deviation and 

then divided by the mean.  

b. Next, the dependency of each parameter is analyzed. In order to understand 

this the Eigenvalue of the standardized data is calculated. Using a few 

simple steps the eigenvalues are determined. We initially find the transpose 

of the input data matrix and compute the covariance of the same. Then using 

the linalg library the eigenvalues are calculated. The result helps to 

understand how each parameter has relative importance on the output 

performance. 

c. Eigenvector obtained:[1.02857143 1.02857143 1.02857143] 

Eigenvalue matrix: [[1. 0. 0.] 

     [0. 1. 0.] 

     [0. 0. 1.]] 

Visualization: On the basis of the eigenvalues obtained it can be understood 

that each parameter in the model is equally important. As the matrix is an 

identity matrix, it justifies the above statement. The data is then represented 

as a scattered plot. 
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Figure 2: Scattered plot of the input standardized data 

 

2. Task 1.2 

This task is oriented towards building and training the neural network to 

evaluate the performance characteristics of a solar PV cell. 

  

a. Once the relative importance of each parameter is known the input data is 

used to model a neural network and train it to predict outputs for varying 

operating conditions. Firstly the input data is normalized, for which the 

median value of each parameter is calculated and divided respectively.  

b. Before inputting the data into the model, the data is divided into two sets, a 

training set with 2/3rds of the data and a second validation set with 1/3rd of 

the data. This is done using the scikit-learn, train_test_split function.   

c. Next, a Keras sequential neural network with an input layer of 6 neurons, 3 

hidden layers with 8, 16, and 8 neurons respectively, and an output layer 

with 2 neurons is modeled. The elu function is used as the activation function 

in all layers.  

d. Using this model and model.fit function the network is trained to achieve a 

loss of less than 0.025. To achieve this, the learning rate is reduced in small 

decremental steps and the patience is increased with the epochs, in the 

least epochs possible.  

Firstly the model is run with the preset parameter values to check the loss. 

Next, the learning rate is reduced to 0.015 from the initial 0.020 to check the 

level of convergence. It’s observed there was a significant convergence 

achieved. Finally, the patience was increased along with the number of 

epochs to 300 and 1000 respectively. It was noticed that a loss of 

0.017054451629519463 was achieved with 1467 epochs in total. The 

neural network model name is set to “model”. 
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e. Once the model is trained it is used to predict the output values. These are 

then compared to the training data set by determining the mean absolute 

error. For calculating the error the built-in mean absolute error function 

under the sklearn.metrics library is used. A mean absolute error of 

0.037755030512470124 W was obtained. Then the predicted vs actual 

power output data is plotted over a logarithmic plot as shown below. 

 

Figure 3: Log-Log plot of predicted vs training  

f. For comparing the validation data similar steps are followed and the mean 

absolute error and the graph are determined.  The mean absolute error 

obtained is 0.07268986425808396 W.  

 

Figure 4: Log-Log plot of predicted vs validation 

 

g. Now coming to the main objective of the model as explained in the 

introduction for this task is to use this trained model to predict output for the 

high flux data. So the high flux data is input as the initial input data set and 

then normalized by dividing each parameter with the respective median 

value before loading it into the model. Once normalized, this data is used to 

predict the output data values. The output data set returned is then 
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compared to the actual data available by calculating the mean absolute error 

and plotting the logarithmic plot.  

The mean absolute error obtained is 0.07705652303362559 W.  

 

Figure 5: Log-Log plot of predicted vs validation for the high flux data 

h. In obtaining a trained neural network, the neural network was used to 

determine the variation of 𝑊 for a set of operating conditions. At a fixed Tair 

value equal to 200C, 4 ohms < RL < 8 ohms and 500 < ID < 1800W/cm2, a 

surface plot is created for 𝑊 as a function of RL and ID. 

 

 

 
Figure 6: Surface plot of power against radiation intensity and load resistance 

3. Task 1.3 

The model obtained in task 1.2 is modified with an added second hidden layer 

with 12 neurons making it a total of 4 hidden layers with 8, 12, 16, and 8 neurons 

respectively. The model is then trained with the same data set as done earlier 

to achieve a low loss. 

The loss obtained after training the data is 0.01639699749648571 in 1961 

epochs with a learning rate set to 0.010. After this, the model is used to predict 
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the power output  and compared to the training dataset. The mean absolute 

error of this comparison is obtained as 0.05823472226575107 W. Finally, a log-

log plot of the predicted vs training data is plotted. 

  

Figure 7: Log-Log plot of predicted vs training 

 The same is repeated with the validation data set. The mean absolute  

 error was obtained to be 0.05861105916502475 W. The logarithmic plot for  

   the same is shown below. 

 

Figure 8: Log-Log plot of predicted vs validation 

A surface plot is also plotted as done with the earlier model to analyze the 

variation of power with the radiation intensity and load resistance when the 

temperature of the air is kept constant. 
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Figure 9: Surface plot of power against radiation intensity and load resistance 

for the modified model 

 

i. The model was then compared to see if it better matches the data or shows 

signs of overfitting. 

● With the help of the derived mean absolute errors of the training 

dataset and validation set for both models, comparing them with each 

other, it can be observed that for the second model the error is lower 

implying it is better. Hence, the predicted data matches closely with the 

actual data on the second model. 

● Observing the error for the training set and validation set, there is 

overfitting of both the models as the error is low for the train set but 

high for the validation set, showing the model predictions are not 

accurate. But there is a clear improvement in the accuracy with the 

second model as the mean absolute errors obtained are very close to 

each other. 

IV. Part Two 

Part one aimed to provide us with a greater understanding in developing and 

evaluating an artificial neural network in assessing the power output of PV 

panels. With this greater understanding, part two asks us to develop a separate 

neural network model that can predict the most effective mode with respect to 

specific operating conditions. A mode in this regard is the manner in which a PV 

system that is composed of four solar panels is structured. The three modes 

with the four solar panels are wired in parallel (mode 0), 2x2 in series/parallel 

(mode 1), or having each of the panels wired in series (mode 2). These are 

visualized in figure.10 which also provides the V-I characteristics of each 

respective mode.  



 

10 

 
Figure 10: Four PV panel System in different modes 

 

1. Task 2.1 

This task develops a neural network model that predicts the power output of a 

PV solar panel for a set of specified operating conditions. Unlike the previous 

tasks, this model incorporates data that is tied to the specific modes that were 

previously described. 

a) This is done by beginning with a new skeleton code that was adjusted to 

incorporate the new data set. Prior to introducing this new data set, the 

parameters are normalized by dividing the parameters by their respective 

median values.  

b) The new set of data was then randomly split between a training set and a 

validation set with ¾ of the data set being used for training. This is done using 

the scikit-learn, train_test_split function.   

c) The normalized training data set is input within a skeleton script of a neural 

network. A sequential neural network named “modelpower” is created. Based 

on the experience and class lectures, the number of inputs, the number of 

hidden layers, and the number of neurons within each layer are selected.  The 

challenge is to make it complex enough to accurately fit the data, but not make 

it too complex where the model is overfitted to the data or requires too many 

iterations to reach convergence. Using this basic architecture the modelpower 

network model is created with an input layer of 12 neurons(three times the 

number of input parameters), and an input_shape of 4. There are three hidden 

layers created with 32, 16, and 8 neurons respectively. All the layers are 

assigned the relu activation function. Finally, an output layer with 2 neurons is 

created. 
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d) By training the model with the training set and adjusting the learning rate, the 

model reached a mean absolute error loss of 0.0196899589565 W, which was 

well below the 0.020 goal. To achieve this the model was run three times, where 

with each iteration the learning rate was reduced with increasing the number of 

epochs. The final learning rate used is 0.0067 and the model was trained for 

3150 epochs in total. 

e) With the trained model, the predicted values were compared to the data set and 

can be visualized below in the logarithmic plot. With the predicted and trained 

value data, the mean absolute error was calculated to be 

0.03017523549085747 W which proves that the model trained is accurate. 

 
Figure 11: Log-Log plot of predicted vs training 

 

f) The trained model was then verified for accuracy and potential overfitting 

through the use of the validation data that comprised ¼ of the original provided 

data set. In doing so, a separate log-log plot was created to compare the 

predicted values which can be seen below in the logarithmic plot. The mean 

absolute error was also calculated to be 0.57812509994 W which shows the 

data is overfit.  

 
Figure 12: Log-Log plot of predicted vs validation 
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Task 2.2 

Now that a neural network model is modeled and trained to predict the output 

power, the analysis of which mode to be used to maximize the output for a set 

of operating input parameters is to be performed. For this, another neural 

network model is modeled and trained with a set of input data sets and a set of 

output labels.  

a) Similar to all tasks, the input data set is first normalized using the median values 

calculated for the respective parameters. Here, the median values are stored in 

variables Tamed, IDmed, and RLmed to ease their use later in the task. A note 

is that the output data is not normalized as they are just the mode numbers. 

b) Next, the ydata provided in the code is an array of 0,1, and 2 values which 

represent the type of mode. Now for the purpose of training the model, they are 

converted and replaced with a one-hot encoding array as shown below. 

[0.] with [1, 0, 0] 

[1.] with [0, 1, 0] 

[2.] with [0, 0, 1] 

Then this one-hot encoded data is stored in an array named ydataCatOHEarray 

for further use. 

c) Before inputting the data into the model, the data is divided into two sets, a 

training set with 3/4ths of the data and a second validation set with 1/4th of the 

data. This is done using the scikit-learn, train_test_split function. Once the split 

is done a line of code (num_classes = 3) is used to set the number of classes 

to 3. 

d) Once the initial setup of the data is done, the neural network model is built. 

Here, a model with one input layer of 16 neurons, two hidden dense layers with 

32 and 16 neurons respectively, and an output layer with the num_classes is 

used i.e, set to 3 which is done in the earlier step. The neural network model 

was defined using a softmax activation function. The name of the model is set 

to “modelmode”. 

e) In the next cell, the model compiler statement is completed as given. Here the 

adam optimizer is used instead of the usual RMSpropoptimizer used in all 

previous models. This optimizer automatically adapts the learning rate to 

achieve convergence in the least number of epochs. 

f) The model.fit statement is then completed with the input and output data set. 

The variable historydata is then replaced with the model_train variable. Then 

the model is trained to achieve a very low loss. First, cell 4 is run once to check 

the loss achieved. Then the number of epochs changed to 1000 and with the 

patience at 100, the cell is rerun. There was a significant reduction in the loss. 

Hence for a final run, the number of epochs was increased to 1500 and patience 

set to 200,  and then the cells 3 and 4 were run together. A loss of 

0.0046219672076404095 W was achieved. 

g) Using the skeleton code, the training versus validation set is done and then the 

loss and the accuracy of the trained model are determined. For each input data 

set the Mmaxint is determined and printed. In doing so, the input array is loaded 
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individually into the test variable using a for loop. Then the test variable is 

pushed into the trained model “modelmode”, to predict the mode which gives 

the maximum performance.  

h) Using the trained model the loss and accuracy are calculated and tabulated. 

training versus validation comparisons 

30/30 [==============================] - 0s 41us/step 

train loss: 0.00013716959801968187 

train accuracy: 1.0 

10/10 [==============================] - 0s 90us/step 

validation loss: 0.0002462394186295569 

validation accuracy: 1.0 

i) Now the loss value of the training and validation are analyzed. It’s seen the loss 

of the training set is less than the validation set showing that there is an 

overfitting of the model. The accuracy of both sets being 1.00 says the model 

can predict data for any test data accurately. 

j) Now as there was overfitting observed in order to reduce it, dropout layers are 

added after the hidden layers in cell 5. Here a dropout probability of 0.25 is set. 

Then the whole model is run and trained to achieve a loss of less than 0.020. 

For achieving the convergence similar to the previous training method the 

number of epochs and patience is increased gradually.; Here the dropout 

probability is modified by a bit if there is not much of a difference seen in the 

fitting of the model. 

training versus validation comparisons 

30/30 [==============================] - 0s 38us/step 

train loss: 0.021406684070825577 

train accuracy: 1.0 

10/10 [==============================] - 0s 100us/step 

validation loss: 0.03500159829854965 

validation accuracy: 1.0 

 

             Model1:             model2: 

x=valid loss/train loss~1.81        x=valid loss/train 

loss~1.62 

Using the data obtained we see that the ratio of the validation to train loss is 

less after the addition of the dropout layers. For the initial model, the loss was 

nearly double the training loss for the validation set stating a clear overfit. But it 

was reduced as the loss difference was reduced between the sets. Hence the 

addition of the dropout layers does help in reducing the overfitting of the model 

to an extent.  

k) Using the modelmode from task 2.2 the best mode is predicted and tabulated 

in the table below. Then the modelpower is used to predict the power for each 

input data with a specified mode. These values are then tabulated below. 
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Tair 

(deg, C) 
 

ID 
(W/m2) 

 

RL 
(Ohms) 

Mmax, int 
Predicted 
by Task 2.2 
modell 

   

Ẇ (𝑊)Predicte
d by Task 2.1 
model for M = 
0 

Ẇ (𝑊) 
Predicted by 
Task 2.1 
model for M = 
1 

Ẇ (𝑊) 
Predicted by 
Task 2.1 model 
for M = 2 

10.0 200 50. 1 0.5408702 1.655226 0.40792674 

20.0 200 130. 2 0.17959945 0.5016117 0.68948674 

10.0 500 40. 1 0.584461 3.736253 2.667686 

20.0 500 80. 2 0.250112 1.0798082 1.9486499 

20.0 700 30. 1 0.57322764 3.8921432 2.2643924 

20.0 700 55. 2 0.43575126 1.4929088 3.659889 

10.0 1000 12. 1 1.6326834 5.246042 0.7956688 

20.0 1000 25. 2 0.65983796 3.5259593 1.2904174 

20.0 1000 39. 2 0.57386976 2.5300159 3.9876418 

 

Table 1: Task 2.1 and Task 2.2 Model Prediction Output 

 

In comparing the mode that is predicted to produce the greatest power output 

from the task 2.2 model, the task 2.1 model was able to accurately predict the 

highest value mode for 9 of the 10 scenarios. With this in mind, it would be safe 

to say that the model would be accurate enough to be used to accurately switch 

setting the  optimal performance in the multi-mode 4 PV panel system. 

 

V. Work Distribution 

Throughout the project timeline, the work was individually done and then 

compared as most tasks were to be done by every member. Using GitHub, and 

living close in proximity, the team was able to easily collaborate. The report was 

worked on collaboratively. 
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VI. Appendices 

 

1. Figures 

 

Figure 1: Solar PV cell 

 

 

Figure 2: Scattered plot of the input standardized data 
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Figure 3: Log-Log plot of predicted vs training  

 

  

Figure 4: Log-Log plot of predicted vs validation 

 

Figure 5: Log-Log plot of predicted vs validation for the high flux data 
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Figure 6: Surface plot of power against radiation intensity and load resistance 

 

  

Figure 7: Log-Log plot of predicted vs training 

 

Figure 8: Log-Log plot of predicted vs validation 
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Figure 9: Surface plot of power against radiation intensity and load resistance 

for the modified model 

 

 
Figure 10: Four PV panel system in different modes 
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Figure 11: Log-Log plot of predicted vs training 

 

 
Figure 12: Log-Log plot of predicted vs validation 

 

2. Tables 

 

Tair 

(deg, C) 
 

ID 
(W/m2) 

 

RL 
(Ohms) 

Mmax, int 
Predicted 
by Task 2.2 
modell 

   

Ẇ (𝑊)Predicte
d by Task 2.1 
model for M = 
0 

Ẇ (𝑊) 
Predicted by 
Task 2.1 
model for M = 
1 

Ẇ (𝑊) 
Predicted by 
Task 2.1 model 
for M = 2 

10.0 200 50. 1 0.5408702 1.655226 0.40792674 

20.0 200 130. 2 0.17959945 0.5016117 0.68948674 

10.0 500 40. 1 0.584461 3.736253 2.667686 

20.0 500 80. 2 0.250112 1.0798082 1.9486499 

20.0 700 30. 1 0.57322764 3.8921432 2.2643924 

20.0 700 55. 2 0.43575126 1.4929088 3.659889 
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10.0 1000 12. 1 1.6326834 5.246042 0.7956688 

20.0 1000 25. 2 0.65983796 3.5259593 1.2904174 

20.0 1000 39. 2 0.57386976 2.5300159 3.9876418 

 

Table 1: Task 2.1 and Task 2.2 Model Prediction Output 

 

3. Code 

 


